星洲网
星洲网
星洲网 登入
Newsletter|星洲网 Newsletter 联络我们|星洲网 联络我们 登广告|星洲网 登广告 关于我们|星洲网 关于我们 活动|星洲网 活动

ADVERTISEMENT

ADVERTISEMENT

副刊

|

新教育

|
发布: 7:30am 25/10/2023

新教育

人工智能

AI

丁源森

正面与负面影响

多面作用

解决瓶颈

寻求平衡

【代码之外】丁源森/透视人工智能 机遇与责任同行

作者: 丁源森

有一天,我们团队里一名博士后在Slack群里用ChatGPT发了一首“歌颂老大千秋万载”的颂词。他自嘲说,如果有一天AI真的统治世界,他就用这首诗投靠AI,以求保命。虽然他是在开玩笑,但这让我意识到,对于“天网”式的AI统治,确实有不少人是真的感到恐惧的。

正因为很多人对AI和机器学习持悲观态度,我在之前的文章中也努力向大家展示其正面影响,尽量以务实和乐观的角度来论述。但赞美之余,我们也不能掉以轻心,忽视其潜在问题。老子说,“祸兮福所倚,福兮祸所伏”,因此,这个系列的最后一篇,要全面探讨一下AI的好与坏。只有全面、理性地探讨,我们在问题出现时才不会乱了方寸。

ADVERTISEMENT

AI在基础科学研究中的:不仅仅是效率

目前的AI在多个方面都给了我们保持乐观态度的理由。它在各领域解决了一些长期困扰我们的“瓶颈”问题。

在生物科技这个领域,AI帮助我们更快、更低成本地了解蛋白质是如何折叠的,这对于发现新药至关重要。借助AI,我们能够快速从大量的基因序列中推测分子结构和属性,无需耗费大量资金进行生化实验。这不仅大幅降低了生产成本,也显著提高了研发效率。值得一提的是,目前AI在这一领域的表现已远超传统技术。

除了生物科技,物理学也因为AI的加持而得到了重大突破,特别是在核聚变研究方面。如果您还记得我们在〈黑洞与咸煎饼〉中的讨论,您就知道核聚变理论上并不是难以克服的难题——太阳就是一个天然的核聚变反应器。然而,在地球上模拟这一过程的主要挑战在于,我们很难精准地控制电离子以实现全方位的均匀施力。借助强化学习,也就是AlphaGo等软件所使用的技术,现在我们能够实时预测和调整各个不均匀的部分。这也使得核聚变首次实现了能量输出大于能量输入。而如果核聚变能够成功实现商业化,它将成为一种极度环保的能源选择。与核裂变不同,核聚变不仅是一种干净的能源形式,还不存在失控的风险。

又比如在我的研究领域——天文学,AI也具有巨大的潜力。您可能在疫情期间看过Netflix的电影《不要抬头》(Don’t Look Up),它讲述小行星即将撞击地球的故事。尽管这个主题有些老套,但在现实生活中,从海量数据中识别对地球潜在威胁的小行星,确实是一项极其复杂的任务。我和我的同事们也正在利用电脑视觉技术——类似于监控系统的人体追踪技术,来寻找这些小行星。

当AI被不当使用的潜在危害

尽管机器学习在多个方面都正在推动我们社会的发展,但并非所有影响都是正面的。虽然我之前一直强调AI的积极潜力,但我们也必须警觉于它可能带来的风险。

在马来西亚,我们普遍存在一个误区,感觉大家好像认为机器学习是一个高端且难以触及的领域,我们也只能嗑瓜子,看着中美竞争就好了。然而,事实上,机器学习的入门门槛其实相对低。尽管有些研究确实需要大量资金,但普通学生甚至高中生也能理解其中的基础概念。据我所知,像新加坡就正在全球以高额奖学金吸引电脑科学博士生。如果我们马来西亚不开始重视AI和机器学习,那么我们将面临严重的全球竞争劣势。我们需要让年轻人知道,机器学习并不是高不可攀,反而是未来发展的必备技能。

而正因为机器学习的门槛相对较低,这也为不怀好意的人提供了更多可乘之机。我们常说正在变得越来越“智能”,但这种智能不是说有意识,而是它可以用少量的样本做到泛化。以人类来说,我们能够仅凭几句话就识别出说话的人,这是一种高度的泛化能力。而当前的人工智能技术也越来越能在少量样本的基础上进行泛化。这样的进步当然带来潜在的社会风险,比如通过简短的语音样本就能模仿某人的声音。但是这种问题,我觉得所谓“魔高一丈,道高一尺”,最后我们社会也会慢慢适应。

说到坏人用AI做坏事,其实还有更令人担忧的潜在问题。我曾与一位专门使用AI进行蛋白质折叠研究的同事讨论过这个问题。他最担心的是,这种低成本的“制药”技术具有双刃剑的性质:一方面具有制药的潜力,另一方面则可能利用AI来设计病毒,而且成本不高。我自己当时听的时候也是吓出了一身冷汗。

这让我回到了文章的开头,我觉得我们有时在讨论AI时会失焦。像大量失业和“天网”式的自我意识机器人的出现确实有些过于想像,但我们应记住,人类最大的威胁往往还是来自人类自身。

勇往直前,在风险与机会中

有人可能会问,既然有这么多不确定因素,为什么不直接限制这些技术的发展呢?这当然是一个值得深思的问题,美国等国家也在频繁讨论这一点。但核心问题在于,即使我们限制大型模型的发展,问题本质并未解决。小型模型同样有可能造成巨大的破坏,特别是考虑到这一领域的入门门槛相对较低。

另一方面,我们面临许多紧迫和复杂的问题,从应对气候变化和寻找可持续能源,到治疗癌症,甚至应对不可预见但极其严重的问题如小行星威胁。在所有这些方面,机器学习都是我们人类现在唯一的希望。因此,我们不能因为某些潜在的风险而因噎废食。

然而,不管大家觉得我们是因噎废食还是饮鸠止渴,事实是这个大门已经被敲开了。我们现在能做的最好的事情,就是每个人更深入了解这些新兴技术,并形成自己的见解,而不是随波逐流。

不确定的未来的确会令人不安,不过我觉得人类发展总是像在高空的钢索上行走,永远都具有风险和不确定性。但停滞不前不是选项,我们唯有勇往直前才能保持平衡。

更多相关文章:
【代码之外】丁源森/AI在天文上的神助攻
【代码之外】丁源森/做AI时代里的 六边形战士
【代码之外】丁源森/论AI的养成与黯然销魂饭
【代码之外】丁源森/AI、ChatGPT与我妈的扫地机器人

打开全文

ADVERTISEMENT

热门新闻

百格视频

ADVERTISEMENT

点击 可阅读下一则新闻

ADVERTISEMENT